Рабочая частота генератора индукционной литейной установки.
16 Окт   2011   |  Статьи

Н.А.Швыргун.
Главный конструктор проекта ООО «Спарк-Дон, Лтд»

Индукционный нагрев металлов и его применение в литейных установках.

Физическая сущность индукционного нагрева состоит в том, что в электропроводящем теле, помещаемом в переменное электромагнитное поле, индуктируются вихревые токи, нагревающие это тело.
В индукционных литейных установках вокруг индуктора, вследствие пропускании через него переменного тока, возникает переменное магнитное поле. Переменный магнитный поток, пронизывающий находящиеся внутри индуктора заготовки металла, вызывает появление в них индуктированного тока. Плотность этого тока зависит от геометрических размеров, удельного сопротивления, магнитной проницаемости нагреваемого материала, а также от частоты магнитного потока. Эти токи разогревают заготовку в соответствии с законом Джоуля — Ленца, который гласит, что «Количество теплоты, выделяемое в единицу времени в рассматриваемом участке цепи, пропорционально произведению квадрата силы тока на этом участке и сопротивлению участка».
На высокой частоте вихревые токи вытесняются в тонкие поверхностные слои заготовок (скин-эффект), в результате чего их плотность резко возрастает, а по мере приближения к центру заготовки — экспоненциально уменьшается. Именно в поверхностном слое, определяемом как «глубина проникновения тока», выделяется более 85% тепла.
Индукционный нагрев металлов и его применение в литейных установках.

Основными электрофизическими свойствами материалов для расчёта установок индукционного нагрева являются удельное электрическое сопротивление и магнитная проницаемость. Они определяют глубину проникновения тока и мощность, выделяемую в нагреваемом образце. При нагреве ферромагнитных металлов их удельное электрическое сопротивление и магнитная проницаемость изменяются.
Так, электрическое сопротивление металлов и сплавов, в зависимости от их химического состава может увеличиться в 10 раз.
Магнитная проницаемость ферромагнитных тел при достижении телом температуры точки Кюри (точка магнитных превращений) резко уменьшается и становится равной единице.
С увеличением значения удельного электрического сопротивления нагреваемого тела и уменьшением его магнитной проницаемости глубина проникновения тока увеличивается.
Максимальное значение глубины проникновения тока называется горячей глубиной проникновения.
В общих чертах процесс индукционного нагрева ферромагнитной заготовки можно представить по следующей схеме.
В первый момент начинается нагрев образца в тонком поверхностном слое, равном глубине проникновения тока в холодный металл. После потери этим слоем магнитных свойств, глубина проникновения тока возрастает и нагревается слой, расположенный глубже, повышение температуры в первом нагретом слое замедляется. После потери магнитных свойств вторым слоем начинается быстро нагреваться третий слой и так далее.
Пределом роста глубины проникновения тока является горячая глубина проникновения.
Повышение температуры в слое равной горячей глубине проникновения происходит за счет индукционных токов, а в более глубоких слоях — в основном, за счет теплопроводности.
Высокие значения КПД обеспечиваются, прежде всего, расчетом параметров индукционного нагрева под определенные размеры нагреваемого тела. Соотношение размеров индуктора и нагреваемого тела, частота тока и магнитная проницаемость, удельное сопротивление металла — все это определяет эффективность нагрева, т. е. электрический КПД.
Важнейшим параметром, определяющим КПД индукционной установки, а значит и эффективность нагрева, является глубина горячего проникновения тока.
Эффективный индукционный нагрев возможен только при определённых значениях отношения диаметра нагреваемой заготовки к глубине горячего проникновения.

Зависимость электрического КПД индукционной установки

Рисунок 1 — Зависимость электрического КПД индукционной установки от отношения диаметра цилиндрического тела к горячей глубине проникновения тока.

График на рисунке 1 показывает, что уже при значении этого отношения менее 4 нагрев нежелателен, а при соотношении менее единицы вообще неприемлем.
Из этого графика следует, что для повышения эффективности индукционной установки, следует при заданном диаметре нагреваемой заготовки уменьшать значение горячей глубины проникновения тока. Это может быть достигнуто только повышением частоты.
Для установок индукционного нагрева в Российской Федерации выделен ряд разрешённых для использования частот. Для индукционных литейных установок, используемых в зуботехнических лабораториях для плавки стоматологических сплавов, определены частоты 66кГц, 440кГц и 1,76МГц.
Обращаем Ваше внимание, что не все импортные литейные установки соответствуют этому требованию.
Принимая решение по оснащению вашей лаборатории литейной установкой, убедитесь в том, что частота её генератора соответствует приведённым выше значениям. В противном случае, в будущем вы рискуете столкнуться с «непониманием» органов государственного надзора.
Индукционные литейные установки, работающие на частоте 1,76МГц, выполнены на основе ламповых генераторов. В настоящее время такие установки потеряли свою актуальность, вследствие их низкого КПД и морального устаревания.
Исходя из изложенных выше ограничений по частоте генератора литейной установки, в дальнейшем мы будем рассматривать только установки с рабочими частотами генератора равными 66кГц и 440кГц.
Индукционные литейные установки, работающие на частоте 66кГц и 440кГц, имеют сходные характеристики. Их отличает высокий КПД (0,85…0,9), они надёжны, долговечны. Качество литья, получаемое на этих установках, соответствует самым высоким требованиям.
Величина рабочей частоты генератора индукционной литейной установки в значительной степени влияет на её электрические характеристики и эксплуатационные параметры.
Выбор рабочей частоты генератора определяется следующими требованиями:

  • электрический КПД установки должен быть максимальным;
  • время плавки должно быть минимальным;
  • установка должна обеспечивать эффективную работу при плавке стоматологических сплавов, имеющих различные величины диаметра и высоты отдельных заготовок сплава;
  • величина электродинамических сил, воздействующих на расплав, должна быть оптимальной, с одной стороны, для обеспечения качественного перемешивания расплава, а с другой стороны — минимального мениска расплава на завершающем этапе плавки.

Величина рабочей частоты генератора и эффективность плавки заготовок различного диаметра.

Сравнивая эффективность и качественные показатели литейных индукционных установок, необходимо представлять какая из них лучшим образом подходит для литья стоматологических сплавов, обладающих определёнными физико-химическими свойствами и линейными размерами.
Ввиду большого разнообразия используемых стоматологических сплавов, качественный анализ можно сделать, приняв за основу некий «усреднённый сплав». Для такого сплава, нагретого выше точки магнитных превращений (точки Кюри) горячая глубина проникновения тока при частоте 66кГц равна, примерно, 2мм.
Тогда, как следует из графика на рис.1, производить нагрев заготовки сплава с высокой эффективностью при частоте генератора индукционной установки равной 66кГц возможно, начиная с диаметра заготовки D = 10мм. При диаметре заготовки менее 8мм эффективность нагрева будет уменьшаться, достигая минимального значения при диаметрах заготовки сплава равных 5…6мм.
Для частоты 440кГц горячая глубина проникновения тока, при прочих равных условиях, будет составлять величину порядка 0.8мм. Т.е. производить нагрев заготовки сплава с высокой эффективностью при частоте генератора индукционной установки равной 440кГц возможно, начиная с диаметра заготовки D = 4мм.
В теории индукционного нагрева существует понятие «минимально допустимой рабочей частоты генератора» для заданного диаметра цилиндрической заготовки, подлежащей нагреву.
График зависимости минимальной частоты генератора индукционной установки от диаметра нагреваемой установки (см.рисунок 2) строится из условия, что отношение диаметра нагреваемого образца цилиндрической формы к величине горячей глубины проникновения тока» (или «скин-слоя») равно 3.

Зависимость величины минимального диаметра нагреваемой заготовки стоматологического сплава от рабочей частоты генератора

Рисунок 2 — Зависимость величины минимального диаметра нагреваемой заготовки стоматологического сплава от рабочей частоты генератора

Из приведённого графика видно, что:

  • минимально допустимый диаметр нагреваемых заготовок сплава при работе на индукционной установке с частотой 440кГц равен 2,5мм.
  • минимально допустимый диаметр нагреваемых заготовок сплава при работе на индукционной установке с частотой 66кГц равен 6мм.

Т.е. при работе на литейной установке с частотой 66кГц ограничивается возможность использования в качестве «вторичного металла» элементов литниковой системы, имеющих меньшие размеры.
В случае же их использования они будут нагреваться не под действием индукционных токов, а вследствие передачи им тепловой энергии от более горячих частей загрузки тигля, имеющих больший диаметр. Это будет способствовать увеличению времени плавки, т. е. ухудшению одного из основных параметров.
График на рисунке 2 хорошо объясняет суть проблемы. Из него видно, что для нагрева заготовок сплава, имеющих диаметр порядка 5мм, необходима частота генератора не менее 120кГц. Если же используются заготовки с диаметром 4мм, то минимально допустимая частота генератора возрастает до 180кГц.
Таким образом, выбор рабочей частоты генератора для индукционной литейной установки является важнейшим фактором, определяющим её качественные показатели. Индукционная литейная установка для зуботехнических лабораторий должна обеспечивать эффективный нагрев и плавку за короткий промежуток времени всего спектра стоматологических сплавов, отличающихся как химическим составом, так и линейными размерами заготовок.
Особое внимание необходимо обращать на способность установки обеспечивать высокий электрический КПД при работе с заготовками, имеющими диаметры в диапазоне от 3 до 15мм.
Из рисунка 3 видно, что использование в индукционных литейных установках УЛВК-10М и ЦентроЛит-70М генератора с рабочей частотой 440кГц снимает все ограничения, связанные с минимальными линейными размерами загружаемых в тигель частей металла. Это делает её более универсальной. Кроме того обеспечивается максимально быстрый нагрев металла, что приводит к сокращению длительности процесса плавки и повышению экономической эффективности работы.

Оптимальные размеры заготовок

Рисунок 3 — Оптимальные размеры заготовок при частотах 66 и 440 кГц

Величина рабочей частоты генератора и циркуляция расплава в тигле.

Обращая внимание на частоту генератора при выборе индукционной литейной установки, необходимо учитывать не только энергетические характеристики генератора, но и вопросы магнитогидродинамики, т. е. влияние электромагнитного поля индуктора на расплав в тигле.
Под действием электродинамических сил расплавленный металл в средней части тигля перетекает от периферии к оси, затем по оси тигля выжимается вверх к зеркалу ванны расплава и вниз ко дну тигля. Вверху и внизу он перетекает к стенкам и вдоль стенок возвращается к средней части тигля, совершая так называемую двухконтурную циркуляцию.
Факт электродинамической циркуляции металла является достоинством любой индукционной литейной установки. Циркуляция ускоряет расплавление, выравнивает температуру и химический состав расплава.
Однако циркуляция металла имеет и серьезный недостаток, заключающийся в образовании на поверхности расплава выпуклого мениска. Особенно сильно отрицательное влияние мениска на процесс плавки проявляется при использовании в литейных установках генераторов с относительно низкой рабочей частотой. Это связано с тем, что при неизменной мощности, передаваемой в расплав, силовое воздействие на него усиливается тем больше, чем меньше частота генератора.
Например, при частоте генератора равной 66кГц высота мениска почти в 3 раза больше, чем при частоте 440кГц.

Завсисимость величины мениска от рабочей частоты генератора

Рисунок 4 — Зависимость величины мениска от рабочей частоты генератора.

 

Рассмотрим подробнее влияние мениска на процесс плавки.
Расплавленный сплав покрывается тонкой оксидной плёнкой, которая благодаря поверхностному натяжению расплава удерживается на его поверхности, предохраняя расплав от окисления. В период расплавления взламывание плёнки происходит, главным образом, вследствие циркуляции металла.

Если электродинамическая циркуляция способствует образованию мениска большой высоты, разрушение оксидной плёнки может произойти слишком рано. Зеркало расплава откроется до момента выравнивания температуры по всему объёму тигля. Расплав будет открыт для его окисления остаточными газами, присутствующими в плавильной камере.
Для уменьшения вредного влияния мениска на процесс плавки рекомендуется уменьшать мощность на завершающем этапе плавки. Это необходимо для того, чтобы температура расплава выровнялась по всему объёму тигля. При этом важно, чтобы, для предупреждения окисления расплава остаточными газами, оксидная плёнка не была преждевременно разорвана.
Возникает дилемма: для расплавления высокотемпературных компонентов сплава в течение минимального времени необходима максимальная мощность. Но при этом значительные электродинамические силы, воздействующие на расплав приведут к разрыву оксидной плёнки слишком рано. Расплав подвергнется дополнительному окислению. Идеальным вариантом проведения плавки на завершающем этапе является вариант, при котором плавка ведётся при мощности близкой к максимальной при минимальной высоте мениска.
Именно такой вариант работы реализован в литейных установках УЛВК-10М и ЦентроЛит-70М. Вероятность преждевременного разрыва оксидной плёнки на них значительно ниже, вследствие того, что частота генератора выбрана равной 440кГц и мениск расплава имеет минимальную высоту.

  Написать новое сообщение